Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Year range
1.
Neuroscience Bulletin ; (6): 98-112, 2019.
Article in English | WPRIM | ID: wpr-775484

ABSTRACT

Clinical trials and animal experimental studies have demonstrated an association of arterial baroreflex impairment with the prognosis and mortality of cardiovascular diseases and diabetes. As a primary part of the arterial baroreflex arc, the pressure sensitivity of arterial baroreceptors is blunted and involved in arterial baroreflex dysfunction in cardiovascular diseases and diabetes. Changes in the arterial vascular walls, mechanosensitive ion channels, and voltage-gated ion channels contribute to the attenuation of arterial baroreceptor sensitivity. Some endogenous substances (such as angiotensin II and superoxide anion) can modulate these morphological and functional alterations through intracellular signaling pathways in impaired arterial baroreceptors. Arterial baroreceptors can be considered as a potential therapeutic target to improve the prognosis of patients with cardiovascular diseases and diabetes.


Subject(s)
Animals , Humans , Baroreflex , Physiology , Blood Pressure , Physiology , Cardiovascular Diseases , Metabolism , Diabetes Mellitus , Metabolism , Ion Channels , Metabolism , Pressoreceptors , Metabolism
2.
Journal of Medical Biomechanics ; (6): E537-E543, 2018.
Article in Chinese | WPRIM | ID: wpr-803749

ABSTRACT

Objective To investigate the gene expression of Piezo1 in four types of bone cells at different stages of osteogenic differentiation under fluid shear stress (FSS). Methods The mouse-derived mesenchymal stem cells (MSC), osteoblast-like cells MC3T3-E1, post-osteoblasts MLO-A5 and osteocytes MLO-Y4 were exposed to FSS at different magnitude (0.1, 1.1 Pa) with a custom-made cone-plate flow chamber for 0.5, 1, 3, 6, 12 h, respectively. The expression of Piezo1 mRNA was assessed by quantitative real-time polymerase chain reaction. Results Both Piezo1 and Piezo2 were expressed in four types of bone cells. The expression of Piezo1 was significantly up-regulated in all cells under FSS stimulation, and the expression level under 1.1 Pa FSS was significantly higher than that under 0.1 Pa FSS. In addition, the expression of Piezo1 in MSC, MC3T3-E1 and MLO-A5 cells increased to the highest level at 1 h under FSS stimulation. The expression of Piezo1 in MC3T3-E1 cells was much higher than that in the other three types of cells. Conclusions The expression of Piezo1 was related to the process of osteogenic differentiation, FSS level and loading time, and this research finding is of great significance to reveal the mechanism of mechanotransduction in bone tissues and to establish clinical treatment for bone diseases.

SELECTION OF CITATIONS
SEARCH DETAIL